Expression of Inhibin-Alpha Is Regulated Synergistically by Wilms' Tumor Gene 1 (Wt1) and Steroidogenic Factor-1 (Sf1) in Sertoli Cells

نویسندگان

  • Shao-Yang Ji
  • Jian-Xiu Hao
  • Lei Li
  • Jun Zhang
  • Qiao-Song Zheng
  • Xi-Xia Li
  • Xiao-Na Wang
  • Chun-Sheng Han
  • Fei Gao
  • Yi-Xun Liu
چکیده

Wt1 encodes a zinc finger nuclear transcriptional factor, which is specifically expressed in testicular Sertoli cells and knockdown of Wt1 in Sertoli cells causes male mice subfertility. However, the underlying mechanism is still unclear. In this study, we found that expression of inhibin-α is significantly reduced in Wt1-deficient Sertoli cells. Luciferase assays using the inhibin-α promoter indicated that the inhibin-α promoter is transactivated by the Wt1 A, and B isoforms (-KTS), but not the C, and D isoforms (+KTS). Analysis of the Wt1 responsive element of the inhibin-α promoter region using site-directed mutagenesis showed that the nucleotides between -58 and -49 are essential for Wt1-dependent transactivation of the inhibin-α promoter. ChIP assays indicated that Wt1 directly interacts with the inhibin-α promoter. In addition, the inhibin-α promoter is activated synergistically by Wt1 and Sf1. Mutation of the ligand binding domain (LBD) of Sf1 (residues 235-238) completely abolished the synergistic action between Wt1 and Sf1, but did not affect the physical interaction between these two proteins, suggesting that other factor(s) may also be involved in the regulation of inhibin-α in Sertoli cells. Further studies demonstrated that β-catenin enhances the synergistic activation of Wt1 and Sf1 on the inhibin-α promoter. Given the fact that inhibin-α, a subunit of inhibin, is known to be involved in the regulation of spermatogenesis and testicular steroidogenesis, this study reveals a new regulatory mechanism of inhibin-α in Sertoli cells and also sheds light on the physiological functions of Wt1 in gonad development and spermatogenesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

FOXL2 transcriptionally represses Sf1 expression by antagonizing WT1 during ovarian development in mice.

Steroidogenic factor 1 (SF1; Ad4BP/NR5A1) plays key roles in gonadal development. Initially, the Sf1 gene is expressed in mouse fetal gonads of both sexes, but later is up-regulated in testes and down-regulated in ovaries. While Sf1 expression is activated and maintained by Wilms tumor 1 (WT1) and LIM homeobox 9 (LHX9), the mechanism of sex-specific regulation remains unclear. We hypothesized t...

متن کامل

Wt1 directs the lineage specification of sertoli and granulosa cells by repressing Sf1 expression.

Supporting cells (Sertoli and granulosa) and steroidogenic cells (Leydig and theca-interstitium) are two major somatic cell types in mammalian gonads, but the mechanisms that control their differentiation during gonad development remain elusive. In this study, we found that deletion of Wt1 in the ovary after sex determination caused ectopic development of steroidogenic cells at the embryonic st...

متن کامل

Over-expression of Wilm’s Tumor Gene 1 (WT1) in Iranian Patients with Acute Myeloblastic Leukemia

Background: The Wilm’s tumor gene 1 (WT1) encodes a zinc finger transcription factor that is inactivated in a subset of Wilm’s tumors. It plays a crucial role in growth, proliferation and development of some embryonic and adult organs. WT1 is expressed as a tumor associated antigen (TAA) in various types of solid and hematopoietic malignancies and can be employed as a useful marker for targeted...

متن کامل

Expression of steroidogenic factor 1 and Wilms' tumour 1 during early human gonadal development and sex determination

The transcription factors SF-1 and WT1 play pivotal roles in mammalian gonadal development and sexual differentiation. In human embryos, both SF-1 and WT1 are expressed when the indifferent gonadal ridge first forms at 32 days post-ovulation. As the sex cords develop - providing morphological evidence of testis differentiation - SF-1 localises predominantly to developing Sertoli cells in the se...

متن کامل

SOX8 is expressed during testis differentiation in mice and synergizes with SF1 to activate the Amh promoter in vitro.

Sox8 is a member of the Sox family of developmental transcription factor genes and is closely related to Sox9, a key gene in the testis determination pathway in mammals. Like Sox9, Sox8 is expressed in the developing mouse testis around the time of sex determination, suggesting that it might play a role in regulating the expression of testis-specific genes. An early step in male sex differentia...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013